BDF Schemes in Stable Generalized Finite Element Methods for Parabolic Interface Problems with Moving Interfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially Penalized Immersed Finite Element Methods for Parabolic Interface Problems

We present partially penalized immersed finite element methods for solving parabolic interface problems on Cartesian meshes. Typical semi-discrete and fully discrete schemes are discussed. Error estimates in an energy norm are derived. Numerical examples are provided to support theoretical analysis.

متن کامل

Adaptive Finite Element Methods for Parabolic Problems

We continue our work on adaptive nite element methods with a study of time discretization of analytic semigroups. We prove optimal a priori and a posteriori error estimates for the discontinuous Galerkin method showing, in particular, that analytic semigroups allow long-time integration without error accumulation. 1. Introduction This paper is a continuation of the series of papers 1], 2], 3], ...

متن کامل

Eulerian Finite Element Methods for Parabolic Equations on Moving Surfaces

Three new Eulerian finite element methods for parabolic PDEs on a moving surface Γ(t) are presented and compared in numerical experiments. These are space-time Galerkin methods, which are derived from a weak formulation in space and time. The trialand test-spaces contain the traces on the space-time manifold of an outer prismatic finite element space. The numerical experiments show that two of ...

متن کامل

Finite Element Methods for Flow Problems with Moving Boundaries and Interfaces

This paper is an overview of the finite element methods developed by the Team for Advanced Flow Simulation and Modeling (T?AFSM) [http://www.mems.rice.edu/TAFSM/] for computation of flow problems with moving boundaries and interfaces. This class of problems include those with free surfaces, two-fluid interfaces, fluid-object and fluid-structure interactions, and moving mechanical components. Th...

متن کامل

Gradient Recovery in Adaptive Finite Element Methods for Parabolic Problems

Abstract. We derive energy-norm a posteriori error bounds, using gradient recovery (ZZ) estimators to control the spatial error, for fully discrete schemes for the linear heat equation. This appears to be the first completely rigorous derivation of ZZ estimators for fully discrete schemes for evolution problems, without any restrictive assumption on the timestep size. An essential tool for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Modeling in Engineering & Sciences

سال: 2020

ISSN: 1526-1506

DOI: 10.32604/cmes.2020.09831